	CHAPTER 1								
	RELATION & FUNCTIONS								
	ASSERTION & REASON QUESTIONS								
SL.NO.	QUESTION								
	Choose the correct option in the following questions of Assertion – Reason Question								
	(a) Both A and R are correct; R is the correct explanation of A.								
	(b) Both A and R are correct; R is not the correct explanation of A.								
	(c) A is correct; R is incorrect.								
	(d) R is correct; A is incorrect								
1	Assertion (A) Let A = {a, b, c}, B = {4, 5, 6, 7} and let f = {(a, 4), (c, 5), (b, 7)} be a function								
	from A to B. Then f is one-one.								
	Reason (R) f is bijective function								
2	Assertion (A) if n (A) = 5 and n(B) = 4The number of relation from set A to B is 20								
	Reason (R) The number of subset of A X B is 2 ²⁰								
3	Assertion(A) T is the set of triangle such that {(T1, T2) : T1 is congruent to T2}. Then R is an equivalence relation.								
	Reason(R) Any relation R is an equivalence relation, if it is reflexive, symmetric and transitive								
4	Assertion(A) the function $f : R \rightarrow R$, given by $f(x) = 2x$, is one-one and onto.								
	Reason(R) A function f : X \rightarrow Y is said to be one-one and onto (or bijective), if f is both								
	one-one and onto.								
5	Assertion(A) The relation R on the set N×N, defined by (a, b) R (c, d) \Leftrightarrow a+d = b+c for								
	all (a, b), (c, d) \in N×N is an equivalence relation.								
	Reason (R) Any relation R is an equivalence relation, if it is reflexive, symmetric and								
	transitive.								
6	Assertion: If $f: R \rightarrow R$ defined by $f(x)=sin x$ is a bijection. Reason: If f is both one- one and onto. It is bijection.								
	Assertion: Let L be the set of all lines in a plane and R be the relations in L defined as $R = {(L_1, L_2): L_1 is perpendicular to L_2}$. This relation is not equivalence relation.								
7	Reason: A relation is said to be equivalence relation, if it is reflexive, symmetric and								

	transitive								
	Assertion:Domain and range of the relation $R=\{(x,y):x-2y=0\}$ defined on the set $A=\{1,2,3,4\}$ are respectively $\{1,2,3,4\}$ and $\{2,4,6,8\}$								
8	Reason: Domain and Range of a relation R are respectively the sets {a: $a \in A$ and (a, $b \in R$ } and {b: $b \in A$ and (a, $b \in R$ }								
	Assertion: The Greatest integer Function $f: R \rightarrow R$ is given by $(x)=[x]$ is not onto.								
9	Reason: A function $f:A \rightarrow B$ is said to be injective if $f(a)=f(b) \Longrightarrow a=b$								
	Assertion: For two sets A=R-{3} and B=R-{1} defined a function f: A \rightarrow B as f(x) = $\frac{x-2}{x-3}$ is bijective								
10	Reason: A function $f:A \rightarrow B$ is said to be surjective if for all $y \in B, \exists, x \in A$ such that $f(x)=y$								
	Assertion (A): The relation R in the set $A = \{1, 2, 3, 4, 5, 6\}$ defined as								
	$R = \{(a,b): b \ is \ divisible \ by \ a\}$ is not an equivalence relation.								
	Reason (R) : The relation R will be an equivalence relation, if it is reflexive, symmetric								
11	and transitive.								
	Assertion (A): If $A = \{x \in Z : 0 \le x \le 12\}$ and R is the relation in A given by								
	$R = \{(a,b): a = b\}$, then the set of all elements related to 1 is $\{1,2\}$.								
	Reason (R) : If R_1 and R_2 are equivalence relation in a set A, then $R_1 \cap R_2$ is an								
12	equivalence relation.								
	Q3. Assertion (A): Let $f: R \to R$ be defined by $f(x) = x^2 + 1$, then the pre-image of 17								
	are ±4.								
	Reason (R) : A function $f : A \rightarrow B$ is called one-one function, if distinct elements of A								
13	have distinct images in B.								
	Assertion (A): Let a relation R defined from $A = \{1, 2, 5, 6\}$ to itself as								
	$R = \{(1,1), (1,6), (6,1)\}$, then R is symmetric relation.								
	Reason (R) : A relation R in set A is said to be symmetric								
14	$(a,b) \in R \Longrightarrow (b,a) \in R, a,b \in A.$								
15	Assertion (A): The modulus function $f: R \to R$ be given by $f(x) = x $, is neither one-								

	one nor onto
	Reason (R) : The signum function $f : R \to R$ given by $f(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases}$ is
	bijective.
16	ASSERTION – The relation R given by R={(1,3),(4,2),(2,4),(2,3),(3,1)} on a set A={1,2,3,4} is symmetric. REASON – For symmetric relation R=R ⁻¹
47	ASSERTION - let T be the set of all triangles in a plane with R being a relation in T given by $R = \{ (T1,T2): T1 \text{ is similer to } T2 \}$. R is an equivalence relation.
17	REASON- A reflexive symmetric and transitive relation is an equivalence relation. ASSERTION- Let $f : R \rightarrow R$ defind as $f(x) = [x]$ where [.] represents greatest integer function
18	then f is not one- one.
	REASON- A function f is one -one if $f(\alpha) = f(\beta)$ implies $\alpha = \beta$ ASSERTION- Number of all on to functions from the set {1,2,3,4} to itself is 24.
19	REASON – On to functions from the set { 1,2,3,n} to itself is simply a permutation on r symbols namely 1,2,3n is n^{2} !
	ASSERTION- If $A = \{1,2\}$ then no of reflexive relations on A is 4 .
20	REASON – No of reflexive relations define on a set of n elements is $2^{n(n-1)}$
21	Assertion (A) : If n(A) =p and n(B) =q then the number of relations from A to B is 2^{pq} . Reason (R) : A relation from A to B is a subset of A×B.
	Assertion(A): Domain and Range of a relation $R=\{(x,y):x-2y=0\}$ defined on the set $A=(1,2,3,4)$ are respectively $\{1,2,3,4\}$ and $\{2,4,6,8\}$ Reason: Domain and Range of a relation R are respectively the sets $\{a:a\in A \text{ and } (a,b)\in A\}$
22	R} and {b: b∈A and (a,b) ∈R}
23	Assertion (A): ArelationR={(1,1),(1,3),(1.5),(3,1)(3,3),(3,5)}definedonthesetA={1,3,5}istransitive. Reason(R): A relation R on the set A symmetric if (a, b) \in R and (a, c) \in R \Rightarrow (a,c) \in R
24	Let R be the relation in the set of integers Z given by R= {(a, b): 2 divides a-b} Assertion (A): R is a reflexive relation. Reason (R): A relation is said to be reflexive if xRx, ∀x∈Z
	Consider the function f: $R \rightarrow R$ defined as $f(x) = x/x^2 + 1$.
25	Assertion (A): f(x) is not one-one. Reason (R): f(x) is not onto.
26	Assertion (A): The relation R on the set N x N, defined by (a, b) R (c, d) \leftrightarrow a+d = b+c for all (a, b), (c, d) \in N x N is an equivalence relation.

	Reason (R): Any relation R is an equivalence, if it is reflexive, symmetric and transitive
	Assertion (A): $f(x) = 1 + x^2$ is a one to one function from $R^+ \rightarrow R$,
27	Reason (R): Every strictly monotonic function is a one to one function.
	Let W be the set of words in the English dictionary.
	A relation R is defined on W as $R = \{(x, y) \in W x W \text{ such that } x \text{ and } y \text{ have at least one letter in common}\}$
	Assertion (A): R is reflexive.
28	Reason (R): R is symmetric.
	Consider the set A = {1, 3, 5}.
	Assertion (A): The number of reflexive relations on set A is 2 ⁹ .
29	Reason (R): A relation is said to be reflexive if xRx , $\forall x \in A$.
	Consider the function f : $R \rightarrow R$ defined as $f(x) = x^3$
	Assertion (A): f(x) is one – one function.
30	Reason (R): f(x) is one – one function if co-domain = range.
	Assertion (A)
	If n (A) =p and n (B) = q then the number of relations from A to B is 2^{pq} .
	Reason(R)
31	A relation from A to B is a subset of A x B.
	Assertion (A)
	If n (A) =m, then the number of reflexive relations on A is m
	Reason(R)
32	A relation R on the set A is reflexive if (a, a) a A
	Assertion (A)
	A relation R ={ (1,1),(1,2),(2,2),(2,3)(3,3)}defined on the set A={1,2,3} is reflexive.
	Reason(R)
33	A relation R on the set A is reflexive if (a,a) belongs to A, for all a belongs to A
	Assertion (A) : A={1,2,3},B={4,5,6,7},f={(1,4),(2,5),(3,6)} is a function from A to B. Then f is one-one
34	Reason(R) : A function f is one –one if distinct elements of A have distinct images in B.
35	Assertion (A): n(A) =5, n(B) =5 and f : A B is one-one then f is bijection

	Reason(R): Ifn(A)=n(B)theneveryone-onefunctionfromAtoBis onto								
	Assertion: A relation $R = \{1,1\}$ in the set $A = \{1,2,3\}$ is a reflexive relation.								
	Reasoning: To be reflexive (a, a) $\in \mathbb{R}$, $\forall a \in \mathbb{A}$								
36	$[A \in A] \subseteq [A, a] \subseteq [A, a] \subseteq [A]$								
	Assertion: A relation R = $\{1,2\}$ in the set A = $\{1,2,3\}$ is a transitive relation.								
37	Reasoning: To be transitive (a, b) $\in \mathbb{R}$ and (b, c) $\in \mathbb{R} \Rightarrow (a, c) \in \mathbb{R}$								
	Assertion: A relation R = {(1,2), (2,1), (1,1), (2,2), (3,3)} in the set A = {1,2,3} is an								
	equivalence relation.								
38	Reasoning: To be symmetric (a, b) $\in R \Rightarrow (b, a) \in R$								
	Assertion: A function f: $R \rightarrow R$ defined by f(x) = $ x $ is not onto.								
39	Reasoning: Range of f = R.								
	Assertion: A function f: $R \rightarrow R$ defined by f(x) = e^x is not onto.								
40	Reasoning: Range of $f \neq R$ (Codomain).								
	Assertion: Every equivalence relation is reflexive also.								
41	Reason: Every reflexive relation is equivalence relation.								
	Assertion: A relation from set A to B is a subset of A x B.								
42	Reason: \emptyset is subset of every set.								
	Assertion: A one – one function f: $\{1,2,3,4,5\} \rightarrow \{1,2,3,4,5\}$ is onto.								
43	Reason: A one – one function from an arbitrary set X to itself is always onto.								
	Assertion: A function $f : N \rightarrow N$ given by $f(x) = x^2$ is onto.								
44	Reason: A function $f: X \rightarrow Y$ is said to be onto if every element of Y is image of some element of X under f.								
	Assertion: The relation R in the set {x \in Z : -1 < x < 13} defined as R = {(a,b) : a – b is an integer} is symmetric.								
45	Reason: A relation R in a set A is called reflexive if every element of set A is related to itself.								
	Let R be the relation in the set of integers \mathbb{Z} given by R={(a,b):2 divides a-b}								
10	A: R is a reflexive relation								
46	R: A relation is said to be reflexive if xRx, $x\forall \mathbb{Z}$								
47	If A={1,2,3}, B={4,5,6} and f={(1,4),(2,5),(3,6)} is a function from A to B								
	A: f(x) is one-one function								

ZIET, BHUBANESWAR

	R: f(x) is onto function								
	Consider a set A={a,b,c}.								
	A: the no of reflexive relations on the set A is 2 ⁹								
48	R: the relation is said to be reflexive if $xRx,x\forall A$								
	Let a function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x)=x^2$								
49	A: f is many-one R: f(-x)=f(x)= x ² , x∀ℝ								
	Let W be the set of words in English dictionary. A relation R is defined on W asR= $\{(x, y) \in W \times W \text{ such that } x \text{ and } y \text{ have at least one letter in common } \}$								
	Assertion:R is reflexive.								
50	Reason: R is symmetric.								
	Assertion: The function $f(x)$ given by $f(x) = \sin^{-1} \left[\log \left(x + \sqrt{x^2 + 1} \right) \right]$ is an odd function. Reason: The composition of two odd function is an odd function.								
51	(a) 1 (b) 2 (c) 3 (d) 4								
	Assertion: Every function can be uniquely expressed as the sum of an even function and								
	an odd function. Reason: The set of values of parameter a for which the function $f(x)$ defined as								
	$f(x) = \tan(\sin x) + \frac{x^2}{a}$ on the set $[-3,3]$ is an odd function is, $[9,\infty)$								
52	(a) 1 (b) 2 (c) 3 (d) 4								
	Assertion: If $ad - bc \neq 0$, then $f(x) = \frac{ax + b}{cx + d}$ cannot attain the value $\left\{\frac{a}{c}\right\}$								
	Reason: The domain of the function $g(x) = \frac{b - dx}{cx - a}$ is $R - \left\{\frac{a}{c}\right\}$								
53	(a) 1 (b) 2 (c) 3 (d) 4								
	Assertion: $f(x) = x-2 + x-3 + x-5 $ is an odd function for all values of x between								
	3 and 5.								
54	Reason: $f(-x) = -f(x)$ for all odd functions.								
J 4	a) 1 (b) 2 (c) 3 (d) 4								
	Assertion: The domain of definition of the function $f(x) = e^{2x} + \cos^{-1}\left(\frac{x}{2} - 1\right)$ is								
	$(0,1) \cup (1,2) \cup (2,3) \cup (3,4)$ Reason: The domain of $\cos^{-1}\left(\frac{x}{2}-1\right)$ is $(0,4)$								
55									
	a)1 (b) 2 (c) 3 (d) 4								
56	A : If the set A contains 5 elements and the set B contains 6 elements , then the number								

	of one-one and onto mappings from A to B is 0							
	R: If A and B are two non empty finite sets containing m elements and n elements respectively , then the number of one-one and onto mappings from A to B is $n!$ if m= n and 0 if $m \neq n$							
	A :The function $f(x) = x $ is not one -one.							
57	R :The function $f(x) = x $ is onto.							
	A: A relation R ={ (1,1),(1,2),(2,2), (2,3) , (3,3) }defined on the set A ={ 1,2,3} is reflexive.							
58	R: A relation R on the set A is reflexive if $(a,a) \in R$, $\forall a \in A$							
	A:Let $f: X \to Y$ be a function. Define a relation R on X given by							
	$R = \{(a,b) : f(a) = f(b)\}$. Then R is equivalence relation.							
59	R: R is not symmetric.							
	If $f : R \to R$ is an injective function such that range of $f = \{a\}$, then the number of							
	elements in A is 1.							
60	R: f is one – one function so different element of A has different images.							

ANSWER KEY

1	C	16	D	31	А	46	A
2	D	17	А	32	D	47	В
3	А	18	А	33	А	48	А
4	А	19	С	34	А	49	А
5	А	20	А	35	А	50	В
6	D	21	А	36	D	51	А
7	А	22	D	37	А	52	В
8	D	23	С	38	В	53	А

9	В	24	А	39	С	54	В
10	В	25	В	40	A	55	С
11	А	26	А	41	С	56	А
12	D	27	А	42	В	57	А
13	В	28	В	43	С	58	D
14	А	29	D	44	D	59	С
15	С	30	С	45	В	60	А

Prepared by : PGT(Maths) of BHUBANESWAR REGION, GUWAHATI REGION, KOLKATA REGION, SILCHAR REGION, RANCHI REGION & TINSUKIA REGION

Vetted by : BHUBANESWAR REGION